

Uranyl Binding by a Novel Bis-Calix[4]arene Receptor

Philippe Schmitta, Paul D. Beer*a, Michael G. B. Drewb and Paul D. Sheenb

^aInorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.

^bDepartment of Chemistry, University of Reading, Reading, RG6 6AD, UK.

Received 29 May 1998; accepted 23 June 1998

Abstract

A new bis-calix[4] arene receptor 3 has been synthesized which complexes and extracts the uranyl cation in organic media. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: calixarene; uranyl; complexation; extraction.

Introduction

Because of its great potential as an energy source, the selective extraction of uranium dissolved in seawater in the form of the uranyl cation (UO_2^{2+}) has attracted the attention of many chemists [1,2]. Many tailor-made ligands (uranophiles) have been designed to perform this operation at the molecular level, some of which have utilised the calixarene framework [2]. In order to achieve the desired commercial viability, the ideal receptor must display a remarkable specificity and this may be achieved by taking into consideration as many of the coordinating particularities of the uranyl cation as possible. One of these key-features is the ability of the UO_2^{2+} ion to accommodate from four to six oxygen donor ligands in an equatorial pseudo-planar arrangement [3,4]. In order to enhance the recognition in favour of a linear di-oxo species such as uranyl the incorporation of receptor-linked H-bond donors in a suitable geometry to interact with the target's oxo group would also be beneficial [4]. This last approach involving second-sphere coordination has been named 'stereognostic coordination' [5].

Taking these coordinating features into account, we have synthesized a new bis-calix[4]arene-based uranophile designed to bind and ultimately extract uranyl into organic solvent media. Fashioned to provide a planar tetradentate coordinating platform for the uranium(VI) atom, 3 also contains four hydrogen-bond donor groups that can interact with uranyl oxygen atoms (Figure 1).

Synthesis and Solid State Structure

The condensation of p-tert-butyl-calix-calix[4] arene with one equivalent of methyl 2,6-bis-(bromomethyl) benzoate [6] (1) in refluxing acetonitrile furnished both dimeric (2a) and trimeric (2b) species in 27% and 17% yields respectively (Scheme 1).

Scheme 1

¹ Characterization data for: **2a**, ¹H NMR (CDCl₃, 500 MHz), 8.55 (d, 4H, J 8Hz), 7.46 (s, 4H), 7.07 (s, 8H), 6.92 (t, 2H, J 8Hz), 6.89 (s, 8H), 5.18 (s, 8H), 4.37 (d, 8H, J 8Hz), 3.84 (s, 6H), 3.36 (d, 8H, J 8Hz), 1.26 (s, 36H), 0.97 (s, 36H). ¹³C{¹H} NMR (CDCl₃, 125 MHz), 168.7, 151.1, 159.7, 147.4, 141.5, 136.0, 133.0, 132.2, 129.1, 128.5, 127.6, 125.9, 125.2, 75.3, 52.2, 34.0, 33.9, 32.2, 31.8, 31.1. (FAB⁺)MS: 1641 (M+Na).

²b, ¹H NMR (CDCl₃, 500 MHz), 8.41 (d, 6H, *J* 8Hz), 7.95 (t, 3H, *J* 8Hz), 7.06 (s, 6H), 7.04 (s, 12H), 6.79 (s, 12H), 5.17 (s, 12H), 4.25 (d, 12H, *J* 8Hz), 3.69 (s, 9H), 3.31 (d, 12H, *J* 8Hz), 1.28 (s, 54H), 0.95 (s, 54H). ¹³C{¹H} NMR (CDCl₃, 125 MHz), 168.4, 150.7, 150.3, 146.9, 141.3, 135.8, 132.4, 131.3, 129.0, 127.7, 127.5, 125.6, 125.0, 75.4, 52.2, 33.9, 33.8, 31.8, 31.7, 31.0. (FAB⁺)MS: 2450 (M+Na).

The diacid derivative 3 was obtained by treatment of 2a with potassium *tert*-butoxide in DMSO at 100 °C and subsequent addition of aqueous hydrochloric acid.²

The X-ray crystal structure of 3 exhibits a solid state 'closed structure' characterized by the two benzoic acid groups being directed away from the cavity defined by the two calix[4] arene moieties (Figure 2).³

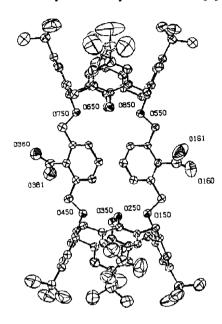
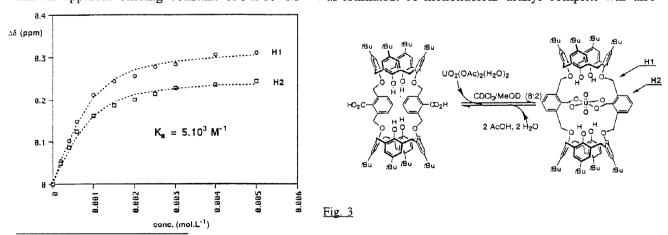



Fig. 2
Uranyl Binding Studies

The preliminary binding capabilities of 3 towards uranyl were initially explored by $^{1}\text{H-NMR}$. In a 8:2 deuterated chloroform-methanol solvent mixture the addition of $UO_{2}(OAc)_{2}(H_{2}O)_{2}$ to 3 produced substantial downfield shifts of the carboxylate ortho-related benzylic and meta-related aromatic protons (+ 0.32 and + 0.25 ppm respectively) which is indicative of a conformational rearrangement consistent with the opening of the binding cavity. A simple 1:1 complexation model was shown to satisfactorily fit the binding curve (Figure 3) and an apparent binding constant of 5 x 10^{3} M⁻¹ was estimated. A mononuclear uranyl complex was also

² 3: ¹H NMR (CDCl₃, 500 MHz), 7.28 (t br, 2H), 7.22 (d br, 4H), 7.01 (s, 8H), 6.66 (s, 8H), 6.41 (s, 4H), 5.46 (s, 8H), 4.23 (d, 8H, *J* 8Hz), 3.15 (d, 8H, *J* 8Hz), 1.27 (s, 36H), 0.84 (s, 36H). (ES⁺)MS: 1612.9 (M+Na). (ES⁻)MS: 1688.9 (M-H). 3: 3MeOH Found: C, 77.78; H, 7.99. Requires: C, 77.64; H, 8.13).

³ Crystal data for: 3 : $C_{112}H_{138}O_{12}$, M = 1920.88, monoclinic, spacegroup $P2_1/n$, Z = 4, a = 23.40(2), b = 23.11(2), c = 23.37(2) Å, $\beta = 110.71(1)^\circ$, U = 11821 Å³, dcalc = 1.079 Mgm⁻³, $\mu = 0.20$ mm⁻¹, F(000) = 4096, 14438 independent reflections.

isolated as the sole product from the reaction of an excess of $UO_2(OAc)_2(H_2O)_2$ with 3 in 95:5 THF-methanol mixture.⁴ Preliminary extraction experiments were carried out using an aqueous phase containing uranyl nitrate $(0.4 \times 10^{-3} \text{ mol. dm}^{-3})$ at pH = 9 and the extractant dichloromethane solvent phase containing 3 at a concentration of 9.6 x 10^{-3} mol.dm⁻³. After one hour of rapid mixing of solutions, inductively coupled plasma atomic emission spectral (ICP-AES) analysis revealed 30% extraction of uranyl.

In summary, a new chelating bis-carboxylate calix[4] arene has been prepared which displays binding and extraction capabilities towards the uranyl cation.

Acknowledgements

We thank E.P.S.R.C. and the University of Reading for funds for the Image Plate System. This work was supported by A.W.E. Aldermaston (fellowships for P.S. and P.D.S.)

References

- [1] Thuery P, Keller N, Lange M, Vignier J-D, Nierlich M. New J. Chem. 1995;19:619 and references cited therein.
- [2] (a) Thuery P, Nierlich M. J. Incl. Phenom. 1997;27:13; (b) Thuery P, Lance M, Nierlich M. Supramolecular Chemistry. 1996;7:183; Kubo Y, Maeda S, Nakamura M, Tokita, S. J. Chem. Soc., Chem. Commun. 1994:1725; Nagasaki T, Shinkai S. J. Chem. Soc., Perkin Trans. 1991:1063; Shinkai S, Koreishi H, Ueda K, Arimura T, Manabe O. J. Am. Chem. Soc. 1987;109:6371.
- [3] Van der Sluys WG, Sattleberger AP. Chem. Rev. 1990;90:1027.
- [4] Guilbaud P, Wipff G. J. Phys. Chem. 1993;97:5685; Muzet N, Wipff G, Casnati A, Domiano L, Ungaro R, Ugozzoli JF. J. Chem. Soc., Perkin Trans., 2. 1996:1065.
- [5] Walton PH, Raymond KN. Inorg. Chim. Acta. 1995;240:593; Franczyk TS, Czerwinski KR, Raymond KN. J. Am. Chem. Soc. 1992;114:8138; Kobuke Y, Tabushi I, Oh K, Aoki T. J. Org. Chem. 1988;53:5933.
- [6] Moore SS, Tarnowski TL, Newcomb M, Cram DJ. J. Am. Chem. Soc. 1977;99:6398.

⁴ 3UO₂: (FAB+)MS: 1880 (M+Na). (3 · UO₂ · 6H₂O Found: C, 64.85; H, 6.62; U, 12.18. Requires: C, 64.75; H, 6.87; U, 12.11).